Article 8417

Title of the article

SOLVING THE PROBLEM OF INHOMOGENEITY PARAMETERS DETERMINATION IN CYLINDRICAL
BODIES BY MEASURING THE FIELD OUTSIDE THE BODIES 

Authors

Evstigneev Roman Olegovich, Postgraduate student, Penza State University (40 Krasnaya street, Penza, Russia), Roman_cezar@mail.ru

Index UDK

517.3

DOI

10.21685/2072-3040-2017-4-8

Abstract

Background. Direct and inverse electromagnetic and acoustic problems play a crucial role in applied science. The paper focuses on the scalar inverse problem in which the scattered field is measured at the point located closely outside the body. In many contemporary devices the detectors are located in a circle. Such a disposition of the detectors  prevents using rectangular grids for numerical study of the problem. In this case, it is much more convenient to use cylindrical coordinates together with bodies of cylindrical shapes.
Materials and methods. The problem under consideration is described by the Lippman-Schwinger equation. With this equation one calculates the field inside the body. Then, the function heterogeneity, which characterizes the body, is reconstructed using the measured field outside the body and the calculated field distribution inside the body.
Results. The main result of the paper is an algorithm that allows solving the inverse problem. This algorithm is applicable to real as well as complex-valued fields. The article analyzes the algorithm’s resistance to measurement errors.
Conclusions. The developed algorithm allows one to reconstruct some parameters of a cylindrical body. The algorithm is stable against measurement errors.

Key words

volume singular integral equation, integral equation, boundary value problem, numerical methods, inverse problem

Download PDF
References

1. Kaprin A. D., Starinskiy V. V., Petrova G. V. Sostoyanie onkologicheskoy pomoshchi naseleniyu Rossii v 2016 g. [The state of oncological help to the population in Russia in 2016]. Moscow: MNIOI im. P. A. Gertsena filial FGBU «NMIRTs» Minzdrava Rossii, 2017, 236 p.
2. Medvedik M. Yu. Radiotekhnika i elektronika [Radio engineering and electronics]. 2012, vol. 57, no. 2, pp. 175–180.
3. Smirnov Yu. G., Tsupak A. A. Matematicheskaya teoriya difraktsii akusticheskikh i elektromagnitnykh voln na sisteme ekranov i neodnorodnykh tel: monografiya [The mathematical theory of acoustic and electromagnetic waves diffraction on a system of screens and inhomogeneous bodies: monograph]. Moscow: RUSAYNS, 2016, 226 p.
4. Evstigneev R. O., Medvedik M. Yu., Smirnov Yu. G. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Journal of calculus mathematics and mathematical physics]. 2016, vol. 56, no. 3, pp. 490–497.
5. Evstigneev R. O., Medvedik M. Yu. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2014, no. 4 (32), pp. 28–36.
6. Evstigneev R. O. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fizikomatematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2017, no. 2 (42), pp. 52–62.
7. Grzegorczyc T. M., Meaney P. M., Kaufman P. A., diFlorio-Alexander Roberta M., Paulsen K. D. IEEE Transactions on medical imaging. 2012, vol. 3, no. 8, pp. 1584– 1592.
8. Kress R. Applied Mathematical Sciences. New York: Springer-Verlag, 1989, vol. 82.

 

Дата создания: 06.02.2018 10:59
Дата обновления: 23.04.2018 09:15